Error-Correcting Output Coding for Text Classification

نویسنده

  • Adam Berger
چکیده

This paper applies error-correcting output coding (ECOC) to the task of document categorization. ECOC, of recent vintage in the AI literature, is a method for decomposing a multiway classification problem into many binary classification tasks, and then combining the results of the subtasks into a hypothesized solution to the original problem. There has been much recent interest in the machine learning community about algorithms which integrate “advice” from many subordinate predictors into a single classifier, and error-correcting output coding is one such technique. We provide experimental results on several real-world datasets, extracted from the Internet, which demonstrate that ECOC can offer significant improvements in accuracy over conventional classification algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Error-Correcting Codes for Text Classification

This paper explores in detail the use of Error Correcting Output Coding (ECOC) for learning text classifiers. We show that the accuracy of a Naive Bayes Classifier over text classification tasks can be significantly improved by taking advantage of the error-correcting properties of the code. We also explore the use of different kinds of codes, namely Error-Correcting Codes, Random Codes, and Do...

متن کامل

Error-Correcting Output Codes for Multi-Label Text Categorization

When a sample belongs to more than one label from a set of available classes, the classification problem (known as multi-label classification) turns to be more complicated. Text data, widely available nowadays in the world wide web, is an obvious instance example of such a task. This paper presents a new method for multi-label text categorization created by modifying the Error-Correcting Output...

متن کامل

Multi-class Classification with Error Correcting Codes

Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classification of Internet pages for a search engine database. The traditional 1-of-n output coding for classification scheme needs resources increasing linearly with the number of classes. A different solution uses an error correcting code, increasing in length with O(log2(n)) only. I...

متن کامل

Multi-class Text Categorization with Error Correcting Codes

Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classi cation of Internet pages for a search engine database. The traditional 1-of-n output coding for classi cation scheme needs resources increasing linearly with the number of classes. A di erent solution uses an error correcting code, increasing in length with O(log2(n)) only. In t...

متن کامل

Improving Multiclass Text Classification with Error-Correcting Output Coding and Sub-class Partitions

Error-Correcting Output Coding (ECOC) is a general framework for multiclass text classification with a set of binary classifiers. It can not only help a binary classifier solve multi-class classification problems, but also boost the performance of a multi-class classifier. When building each individual binary classifier in ECOC, multiple classes are randomly grouped into two disjoint groups: po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999